
Hand-Object Interaction Pretraining from Videos

Himanshu Gaurav Singh∗ Antonio Loquercio∗ Carmelo Sferrazza
Jane Wu Haozhi Qi Pieter Abbeel Jitendra Malik

Abstract— We present an approach to learn general robot
manipulation priors from 3D hand-object interaction trajec-
tories. We build a framework to use in-the-wild videos to
generate sensorimotor robot trajectories. We do so by lifting
both the human hand and the manipulated object in a shared
3D space and retargeting human motions to robot actions.
Generative modeling on this data gives us a task-agnostic base
policy. This policy captures a general yet flexible manipulation
prior. We empirically demonstrate that finetuning this policy,
with both reinforcement learning (RL) and behavior cloning
(BC), enables sample-efficient adaptation to downstream tasks
and simultaneously improves robustness and generalizability
compared to prior approaches. Qualitative experiments are
available at: https://hgaurav2k.github.io/hop/.

I. INTRODUCTION

Reusable sensorimotor representations have the potential
to give robots access to the versatility of their sensorimotor
apparatus, thereby enabling them to achieve a wide variety
of goals. Similar to advancements in other AI domains [1,
2], such representations are likely to be trained with unsu-
pervised objectives on large datasets. In this work, we study
the feasibility of training such representations using human
videos in the context of dexterous manipulation.

Using videos as a data engine comes with several advan-
tages: (1) they are abundant; (2) they cover a wide range
of skills that we want robots to master; and (3) they reflect
natural or socially acceptable behaviors that we want robots
to emulate. However, training sensorimotor representations
on videos is a challenging endeavor. First, videos only
partially capture the nature of an agent’s interaction with their
surroundings. For instance, by looking at a person holding
an object, it is almost impossible to estimate the force their
fingers are exerting. In addition, the larger the embodiment
gap between a human and a robot, the more their actions
will differ to achieve the same objectives.

The difficulty of learning from videos led previous work
to mostly focus on specific aspects of the problem. One line
of research focused on training visual representations with
off-the-shelf self-supervised vision algorithms on large vision
datasets [3–7]. While simple and effective, such pretrained
representations lack a motor component, making them less
effective on downstream tasks [8]. Another line of work
aims to extract both sensory and motor information from
videos by estimating human motions in 3D [9–13]. However,
these approaches require alignment between the training
videos and the robot’s downstream tasks, which compromises
the generality of the learned representations. Finally, recent
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works aim to use egocentric videos of human activities to
learn an explicit hand-object interaction prior in the form of
a contact-pose prediction model [14, 15]. While a contact-
pose prior is potentially task-agnostic, useful information
in hand-object trajectories extends beyond contact-poses,
including but not limited to pre/post-contact trajectories,
intuitive physics of the interaction and human preferences.

In this paper, we present an approach to capture a general
manipulation prior from in-the-wild videos. Such a prior is
implicitly embedded in the weights of a causal transformer,
pretrained with a conditional distribution matching objective
on sensorimotor robot trajectories. These trajectories are
generated by mapping 3D hand-object interactions to the
robot’s embodiment via a physically grounded simulator.
The choice of an implicit prior, aligned with the current
paradigm in vision and language research, has the potential
advantage of becoming more and more expressive as the
quality and diversity of the data increases. The resulting prior
can be quickly adapted to any manipulation task either with
reinforcement learning or behavioral cloning.

We empirically study the advantages brought forward by
pretraining with hand-object interactions in both simulation
and real-world experiments. The findings of this study in-
dicate that our manipulation prior considerably speeds up
skill acquisition compared to previous methods, even if such
skills are not represented in the training videos. Additionally,
it improves generalization and robustness to disturbances in
the downstream policy.

II. OVERVIEW

The objective of Hand-Object interaction Pretraing (HOP)
is to capture general hand-object interaction priors from
videos. In contrast to previous work, we do not assume a
strict alignment of the human’s intent in the video and the
downstream robot tasks. Our key intuition is that the basic
skills required for manipulation lie on a manifold whose axes
are well covered by unstructured human-object interactions.

We extract sensorimotor information from videos by lifting
the human hand and the manipulated object in a shared
3D space. We then bring such 3D representations to a
physics simulator, where we map human motion to robot
actions. There are several advantages to using a simulator
as an intermediary between videos and robot sensorimotor
trajectories: (i) we can add physics, inevitably lost in videos,
back to the interactions; (ii) it enables the synthesis of
large training datasets without putting the physical platform
in danger; and (iii) we can add diversity to the data by
randomizing the simulation environment, e.g., varying the
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Fig. 1: 3-D hand-object trajectories from in-the-wild human manipulation videos are re-targeted to a robot embodiment within a physics simulator,
resulting in physically grounded robot data. General manipulation priors are learnt from this using generative modelling of trajectories. Such representation
enables sample-efficient adaptation for new downstream tasks.

friction between the robot’s joints, the scene’s layout, and
the object’s location relative to the robot.

We generate a dataset of robot-object in-
teractions D = {τ1, τ2, . . . , τN} where τ =
{(o[0],a[0]), (o[1],a[1]), . . . , (o[T ],a[T ])} are the
observation-action pairs of a single sensorimotor trajectory.
An observation o[k] ∈ O at time k ∈ [0, . . . , T ] consists of
visual scene information (a depth image or a pointcloud)
and robot’s joint angles ϕ[k], i.e., its proprioception. The
action a[k] ∈ A consists of continuous joint angles, which
are converted to joint torques with a low-level PD controller.
We use D to train a base policy πb on the unsupervised
objective of next-action prediction from a history of sensory
observations, i.e., â = πb(o[t : t − L]), where L is a fixed
context length. We finetune πb to generate task-specific
policies πt either optimizing a reward with reinforcement
learning or a behavioral cloning objective on few task-
specific demonstrations. The next section presents each
aspect of our method in detail.

III. METHOD

A. Lifting Hand-Object Interaction Videos to 3D
Recovering the underlying 3D structure of hand-object

interactions from in-the-wild monocular videos is inherently
ambiguous. To alleviate such ambiguity, previous work lever-
aged the insight that the human hand can be used as an
anchor for the 3D location and scale of the manipulated
object [16–21]. Our setup to estimate hand-object interaction
trajectories from videos builds upon recent advances in 3D
vision. Our approach closely follows MCC-HO [16] with a
few modifications to adapt it to our use case.

Given a single RGB image and an estimate of the 3D hand
geometry from HaMeR [22], MCC-HO jointly infers hand-
object geometry as point clouds. To fine-tune the quality
of the prediction, MCC-HO finetunes the object’s pose by
fitting it to a CAD model. However, this finetuning assumes
knowledge of the object the human is interacting with. To
increase generality, we wave this assumption and skip the
CAD-based post-processing. This simplification comes at the
cost of reduced reconstruction quality and temporal smooth-
ness. While we find the first problem not critical for pre-
training, we increase temporal smoothness by anchoring ob-

ject reconstructions to time-smoothed hand detections [22].
In addition, we make the simplifying assumption that the
camera from which the video is collected is static. The result
of this pipeline is a sequence of 3D hand-object poses.

B. Mapping 3D Human-Object Interactions to Robot-Object
Interactions

We formulate a non-linear optimization problem to gen-
erate a sensorimotor trajectory τ from a sequence of 3D
hand-object poses. At each step k, we find the action a[k]
by optimizing the following cost function:

min
a[k]

1

2
∥xh[k]−f(a[k])∥2+λ∥a[k]−ϕ[k−1]∥2, a[k] ∈ A,

(1)
where f is the robot’s forward kinematics, and xh[k] are the
3D coordinates of a set of keypoints on the human hand.
The first term of Eq. 1 represents the difference between
the robot’s and the human keypoints as a function of the
robot’s desired joints a[k]. The second term is proportional
to the energy required to execute the action a[k], which we
minimize to favor smoothness.

While there are approaches that include the object dynam-
ics in the optimization [23–26], they are challenging to apply
to in-the-wild videos due to noise in object pose estimates. In
addition, in-the-wild videos do not have reliable information
about objects’ physical properties, e.g., mass or friction.
Therefore we disregard the dynamics of the manipulated
object and place it on every step at the location observed in
the video. While this can lead to physical implausibility in
the object motion and possibly lack of force-closure grasps,
the data quality does not deteriorate much in practice, as we
can still learn useful behaviors. We empirically show that
without object-trajectories (Section V-C), the quality of the
base policy decreases.

The optimization is performed independently on each
timestep k, and the resulting actions a[k] are executed in
a high-fidelity simulator to generate o[k]. We refer to this
method of mapping human motion to robot sensorimotor tra-
jectories τ as simulator-in-the-loop retargeting. The primary
advantage of this approach is the optimization in (1) can be
conducted using a simplified forward kinematics f , reducing
the computational burden. Despite this simplification, the



actions are executed in a high-fidelity simulator, ensuring
realistic behaviors and high-quality observations.

We randomize the simulated scene to increase data di-
versity. Specifically, we add obstacles like tables and walls
to the scene and vary their positions relative to the robot.
This allows us to add random constraints to this optimiza-
tion problem, which increases the overall diversity in the
extracted joint trajectories. This is particularly important
for robots with kinematic redundancies, since they have
multiple joint position trajectories for the same end-effector
trajectory. Note that this approach to retargeting differs from
previous methods, disregarding other objects in the scene
and optimizing actions via physics-based constraints, e.g.,
minimum jerk [9, 12, 27] or minimum velocity [13].

The quality of the resulting robot trajectories decreases as
the difference between the environment where the video was
collected, the simulated scene, and f grows. However, given
the non-convex optimization landscape of (1), we can obtain
good trajectories by running the optimization multiple times
with various initial positions and scene layouts. High-quality
data is then obtained by pruning the trajectories on metrics
like collision with obstacles and the tracking error between
the hand’s and the robot’s keypoints.

C. Robot Trajectory Pretraining

The resulting trajectory dataset T contains knowledge that
could be valuable to any manipulation tasks. For instance,
T has information about object affordance, i.e., where and
how to grasp; some intuitive (although rudimentary) physics,
e.g., an object should be reached upon before being lifted; or
wrist-hand coordination, i.e., the behavior of orienting and
shaping the hand simultaneously while moving the wrist to
maximize efficiency [28].

We aim to incorporate this knowledge as useful behavioral
priors into a policy πb that can be finetuned to down-
stream tasks. Similar to previous work in language [2],
vision [29], and robotics [8, 30, 31], we instantiate πb as
a transformer [32] and train it on a generative modeling
objective. Specifically, we train πb to capture the conditional
distribution Π(a[t − L : t]|o[t − L : t]) by optimizing the
following loss:

L(τ ; θ) = Et∼[1...T ] [∥a[t− L : t]− πb(o[t− L : t])∥1] .
(2)

However, unlike previous work, our pretraining dataset T
contains neither real-world demonstrations nor complete task
executions. This is because our data is generated from
unstructured 3D hand-object interactions, and we disregard
the dynamics of the manipulated object during retargeting
(Sec. III-B). Yet, we find that the pre-training paradigm in (2)
leads to the emergence of useful representations in πb.

Downstream Finetuning. The pretrained policy πb exhibits
primitive manipulation skills, e.g., reaching an object with
a reasonable grasp pose, while occasionally grasping suc-
cessfully. We finetune these skills to a task by optimizing
a reward with reinforcement learning or a behavior cloning
loss on limited demonstrations. We finetune the whole model

for the task. Empirically, we find that finetuned policies use
the information in πb to train faster, are more robust to
disturbances, and generalize better than policies trained from
scratch and a set of baselines. In addition, we find that the
finetuning process re-utilizes the information in πb even for
tasks not explicitly represented in the training videos.

IV. EXPERIMENTAL SETUP

Robot. We use a low-cost 7-DoF xArm robot with a 16-DoF
Allegro hand [33] vertically mounted at its end effector. The
proprioception observation ϕk includes joint position from
both robots. While we don’t make any specific assumption
about the robot embodiment, we use a multi-fingered hand
instead of a parallel joint gripper since demonstration quality
increases as the embodiment gap between the robot and the
human decreases. Visual sensing comes from a single stereo
camera (Zed-2) mounted on the robot’s right side.

Simulation Setup. Our simulation environment is developed
with the IsaacGym [34] simulator. The robot morphology
and action space are identical to the real setup. However,
since rendering depth images is prohibitively expensive, we
give the agent access to the ground-truth object pointcould
instead of a depth image (see Section II).

Video Datasets. Our pretraining dataset of 3D hand-
object trajectories consists of sequences from two datasets:
DexYCB [35] and 100 Days of Hands [36]. We use 250
videos from the DeXYCB dataset (right-hand only) anno-
tated with ground truth hand-object trajectories as a source
of high-quality data. We additionally use approximately
200 videos from the 100 Days of Hands dataset. Sixty
percent of these videos were previously annotated with hand-
object interaction trajectories [11], which we directly use.
We annotate the remaining videos with our 3D estimation
pipeline (Sec. III-A). Overall, our combined dataset contains
approximately 450 videos. We retarget these videos to obtain
a pretraining dataset T of approximately 70, 000 trajectories.

Retargeting. We use low-storage BFGS [37] from the
NLOpt library [38] for optimization. We perform simulation-
in-the-loop retargeting in a simple simulated scene with a
ground floor on which the robot and a static table are placed
65cm apart. Objects start their trajectories above the table
with a random pose. We run the optimization 700 times for
each video, randomizing the table location and the robot’s
initial joint state. We add a trajectory to T only if, at any
time, their retargeting error (See Eq. (1)) is below 3cm and
the arm does not collide with the table or the floor. Our code
is built upon the implementation of Qin et al. [39].

Transformer. Similar to previous work [40], we represent
the policy πb with a GPT-2-style causal transformer. The
policy takes proprioception and observation input from the
past 16 timesteps and predicts the next action.

Pretraining. We train the transformer with the objective
in Eq. (2) on T . While we could make the prediction
autoregressive and add decoding heads and proxy losses for
future proprioception and images (as in [13]), we empirically



found these changes to be not very helpful in practice to
our tasks. Therefore, we predict only future actions for
simplicity. We trained two distinct base policies—one with
depth observations and the other with point cloud observa-
tions. The former is used for real-world, and the latter for
simulation experiments. However, it’s important to note that
both policies were trained on exactly the same trajectories;
only the associated sensor observations differed.

Finetuning. In simulation, we finetune the transformer with
PPO [41] using the default hyperparameters from [42].
However, we add a few modifications inspired by [43] for
effective fine-tuning: (1) we use a small initial exploration
noise of 0.1; (2) the value and policy networks share the
observation tokenizer, but the tokenizer’s weights are not
updated by the value function’s gradients; (3) we warm up
the value function’s parameters for the first 200 gradient
steps, keeping the actor parameters fixed. Since reinforce-
ment learning requires up to 1 billion steps to convergence,
and our simulator does not offer fast multi-gpu rendering,
we use pointclouds as visual information, as they can be
efficiently simulated. In the real world, we finetune the entire
πb on limited demonstrations with the same objective and
hyperparameters used for pretraining. In these experiments,
we use depth images as input to our policy since pointcloud
estimation in the real world generally requires multiple
cameras, while our real-world setup has a single camera.

Inference. At test time, the model operates in closed-loop:
it receives the past and current observations as input and
predicts the next action to execute. The prediction loop runs
at 20Hz. The predicted action is sent to the xArm and Allegro
low-level controllers, which operate at 120Hz and 300Hz,
respectively.

V. EXPERIMENTAL RESULTS

We design an experimental procedure to analyze the
advantages brought forward by HOP in terms of finetuning
efficiency, generalization, and robustness to perturbations.
Specifically, we ask: (i) How does HOP compare to vision-
only pre-training approaches for robot learning? (ii) How
does HOP compare to existing demonstration-guided re-
inforcement learning algorithms? (iii) How does learning
from hand-object interaction trajectories compare to learn-
ing hand-pose priors only? We answer these questions via
controlled experiments in simulation and the physical world.

A. Comparison to visual pre-training baselines (real-world).

Baselines. We compare our approach to visual pre-training
systems. Such systems are trained on large image or video
datasets but lack a motor component. Specifically, we com-
pare to methods using the following pre-training data:

• ImageNet We encode the depth image with a VIT-
B network [44] pre-trained on ImageNet and pass the
resulting CLS token embeddings to our transformer. The
latter is then trained with real-world data. We consider
two variants: using the VIT features zero-shot (Imagenet

Method Grasp & Drop Grasp & Pour Grasp & Lift

Ours 0.80 1.0 0.65
Diff. Policy 0.90 0.20 0.30
Imagenet-ZS 0.90 0.80 0.30
Imagenet-F 0.80 0.70 0.35

R3M 0.0 1.0 0.0
VIP 0.40 1.0 0.0
MVP 0.20 1.0 0.0

TABLE I: Real-robot results (success rate % averaged over 20
rollouts). Baselines in gray use RGB as input, others depth images.

ZS) and finetuning them on the downstream dataset
(ImageNet F).

• Internet Videos We use off-the-shelf visual features
from R3M [7], VIP [3], and MVP [8]. These features
were obtained with unsupervised contrastive learning
objectives on large video datasets, e.g. Ego4D [45].
Conversely to ours, these baselines don’t use depth but
RGB images as input.

We additionally compare to Diffusion Policies [23] using a
UNet backbone since our tasks exhibit temporally smooth
desired action sequences. Similarly to ours, this baseline
uses depth as input. With the above baselines, we want
to understand how classic methods for behavior cloning
work in our setting, where a single camera and a limited
number of demonstrations are available. Indeed, the previous
approaches are generally applied with a large number of
demonstrations and multiple RGB cameras.

Tasks We evaluate our approach in the real world on three
tasks of increasing complexity. In the first task, Grasp and
Drop, the robot needs to unstack a cube and put it in a
bowl. The second is the Grasp and Pour task, where the
robot needs to pick a bottle and point it towards a bowl.
In the third task, Grasp and Lift, the robot must pick up
one of 4 different-looking objects, all requiring different
spatial affordances. One single model is trained to pick up all
objects. In this task, we evaluate the ability of the approach
to adapt with a few demonstrations on very different object
shapes. We collect 15 demonstrations for the first two tasks
and 50 demonstrations for the third task. We encourage the
reader to check our project page for visualizing the tasks.

Results Table I summarizes the result of our study. The
findings indicate that for tasks with a single object (Grasp &
Drop, Grasp & Pour), all methods perform comparably and
achieve, with some sporadic exceptions, a close-to-perfect
success rate. However, in the hardest task (Grasp and Lift),
where a single policy needs to pick four objects with different
affordances, our approach has a margin of 30 percentage
points to ImageNet Finetuned, the best-performing baseline.
We additionally find that the baselines using RGB data are
more successful with a single object than with multiple ones.
This is likely because there are not enough demonstrations
to learn object-specific affordances. Overall, these results
empirically validate the value of our pretraining strategy.



B. Comparison to demonstration-guided reinforcement
learning strategies (simulation)

Our simulation experiments investigate the effectiveness
of HOP as a base model for adaptation to downstream tasks
using RL. The simulation agent is identical in morphology
to the real robot.

Baselines. We compare our approach to three baselines:
(1) training from scratch (PPO); (2) demonstration-guided
reinforcement learning with a proxy imitation objective [46]
(DAPG); and (3) using adversarial objectives to keep the
policy close to the demonstrations [47] (AMP). DAPG is the
closest to our work, as it trains on a weighted sum of behav-
ioral cloning and reinforcement learning losses. However, it
assumes access to expert demonstrations in the downstream
task. Our pre-training dataset does not fulfill this assumption.
Indeed, humans might not behave optimally according to
the reward, or the task might not be well represented in
the pre-training dataset. Similarly to previous work [48],
we found that training from scratch is unsuccessful using
joint-position control as action space, consistently leading the
PPO baseline to fail. Therefore, we use the moving-average
action space proposed by Petrenko et al. [42] to improve its
performance. All baselines use the same environment settings
and training strategy, e.g., domain randomization parameters,
as our approach.

Tasks and Metrics. We evaluate approaches on three tasks.
The first requires picking objects and placing them at a
specific location (Grasp and Lift). The second is to grasp
objects and throw them in a basket (Grasp and Throw).
In the final task, the robot is required to open a cabine
(Open Cabinet). The Grasp and Lift and Grasp and Throw
tasks have been adapted from IsaacGymEnvs[34] and Open
Cabinet has been adapted from the PixMC[49] benchmark.
We evaluate performance using success over 256 environ-
ments with different objects and report the mean and standard
deviation over three seeds per approach.

HOP enables sample-efficient RL and effective explo-
ration In Figure 2, it is demonstrated that our approach
outperforms all baselines by a large margin, especially when
the pretraining corpus is not closely related to the task. This
is expected because DAPG strongly biases exploration in
the neighborhood of the pre-training trajectories, which may
potentially be misaligned with the downstream task. Further-
more, we observed that the adversarial training scheme of
AMP is unstable and does not scale well with the amount
of data. Finally, we find that using HOP leads to a 2-
5X improvement in sample efficiency compared to training
from scratch. Initializing with HOP enables more informed
exploration than the baselines and reduces variance in policy
gradients.

HOP learns robust and general behaviors Policies fine-
tuned from HOP can potentially bias exploration toward
human-like behavior, leading to more robustness against
forces. This is shown in Fig. 3. Agents trained with our
approach perform better when subject to forces than the ones

trained from scratch. In addition, we show in Fig. 3 that our
approach generalizes 3x better than the policy trained from
scratch. The training objects are different from the testing
ones in their mass, aspect ratio, and relative size with respect
to the hand. The performance generally drops whenever the
test object is heavy (power drill), too large (cracker box), or
too small (marker and scissors) for the allegro hand, which
is approximately 1.5X larger than a human hand. Note that
in these experiments we train the scratch policy with two
billion samples.

C. Comparison to learning a hand-only motion prior (sim-
ulation)

Prior work has shown the benefits of learning a prior on
hand motions from videos of human activities [9, 50, 51].
This section aims to understand the benefits of learning a
prior on the object and the hand jointly. We hypothesize that
learning from hand-object interactions gives the base model
useful information beyond eigen-grasps (which are captured
by a hand-only motion prior), like, for instance, pre- and
post-contact trajectories, intuitive physics of the interaction,
and human preferences.

We evaluate this hypothesis by training a base policy on
our pre-training corpus using masked object observations.
This encourages the base policy to primarily learn a hand
motion prior. As illustrated in Figure 4 (left), we observe
that such a pre-trained policy exhibits reduced robustness
to grasp disturbances. Furthermore, we find that the hand-
only prior is insufficient for learning an effective policy
in the Grasp and Throw task (Fig. 4, right). Since this
task is underrepresented in the pre-training corpus, the hand
motions required are unlikely to be adequately captured
by a hand-only prior. In contrast, learning a joint hand-
object prior provides the model with a more comprehensive
understanding of manipulation, enabling quicker adaptation
to this downstream task.

VI. RELATED WORK

Learning Policies from Human Videos. In-the-wild videos
hold the promise of solving the data problem in robotics.
One of the pioneering efforts in this direction is by Yang
et al. [52], where video data was used to generate action
plans. Several works followed up on this idea, relying on
pre-defined action primitives [53–58]. However, waving the
requirement for pre-defined primitives is challenging since
in-the-wild videos lack motor information.

One way to recover motor information from videos is
training with a trajectory-matching objective [59–62], possi-
bly using intermediate representations like object segmenta-
tion or optical flow [63–65]. However, this approach requires
collecting task- and environment-specific videos where hu-
mans and robots operate in the same workspace. Therefore,
the trajectory-matching formulation largely constrains the
number of videos that can be used for training. To overcome
these constraints, researchers have focused on either learning
exclusively visual representations from videos or extracting



Fig. 2: Comparison of HOP-initialized actor with baselines. HOP improves sample-efficiency of online RL across multiple tasks, particularly when
the downstream task and the behaviors in the data are less aligned, as in Lift & Throw. Runs are averaged across three randomly chosen seeds.

Fig. 3: Evaluating RL finetuning under out-of-distribution scenarios
(Left) To test grasp robustness in the task Grasp & Lift, we apply to grasped
objects forces equal to their weights in random direction. When initialized
with HOP, the resulting policy is more than 3× more robust compared to
training PPO from scratch. (Right) We evaluate grasp success on multiple
objects from the YCB dataset that were not part of the training set. When
initialized with HOP, the resulting policy is more than 2× more robust
compared to training PPO from scratch.

Fig. 4: Pre-training a hand-motion prior leads to decrease in robustness to
force disturbances (left). With our approach, the pre-trained policy learns a
prior on object affordances which leads to more robust grasps. In addition,
pretraining with object poses leads to a more flexible prior and better
finetuning to tasks less aligned with the pre-training data (right).

3D human poses and mapping them to robot actions. In the
following, we cover these works in detail.

Visual Representation Learning for Robotics. Inspired
by successes in computer vision [1] and natural language
processing [66], the robot learning community has recently
focused on pretraining representations on large video datasets
like Ego4D [45] and fine-tuning these representations on
downstream tasks [3–5, 7]. However, being the training
objective based exclusively on image reconstruction, the rep-
resentations focus primarily on low-level vision features, e.g.,
shapes or edges. This gives them limited benefits compared
to representations trained on standard vision datasets [6].

Overall, these works focus on visual generalization, e.g.,
picking up two objects with the same shape but different
colors. However, they have not yet demonstrated action
generalization, where motor skills are adapted to accomplish
novel objectives.
Actions from Videos via 3D. One common approach to
extracting action information from videos is using 3D as an
intermediate representation. If the embodiment gap is small,
human motions can be mapped to robot actions via inverse
kinematics. This is particularly effective when the videos
are task-specific, i.e., when the robot aims to mimic the
human motion [10–12, 67–70]. Instead of learning specific
skills, other works focus on learning a re-usable sensori-
motor prior from videos. However, this prior only captures
human actions [9, 50, 51], disregarding the trajectory of the
manipulated object. Conversely, our work aims to use 3D
hand-object interactions from in-the-wild videos to learn a
re-usable prior for object manipulation.

Dexterous Manipulation. Dexterous manipulation has
been studied for decades [71–75]. In recently years, learning-
based approaches make significant progress [76, 77]. They
can be generally categorized to learning in simulation and
then transferring to the real world [78–83], and learning in
the real-world [39, 84–87]. [12] uses hand-object trajectories
but only use it to collect demonstrations. [88] also does
functional grasp generation, but the results are limited in
simulation. Most of this work learns policies from scratch
and does not use any internet data as prior. Our approach
studies learning hand-object interaction prior from human
videos and is effective both in simulation and real-world.

VII. CONCLUSION AND LIMITATIONS

This work presents an approach to learning general yet
flexible manipulation priors for robot policies from human
videos. While our approach demonstrates a way to pre-train
on a single object interaction, this can, in practice, be lim-
iting. Indeed, human behavior in a video can potentially be
conditioned on information encompassing multiple objects
in the current and previous scenes. This leads to a loss of
signal that could be extracted from the raw video. We predict
that advances in 3-D reconstruction will enable us to use a
more complex scene reconstruction and pretraining.
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